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Abstract

Efficiency and Effectiveness in Large-Scale Learning
In the past decade, the data have grown faster than ever across many domains. For example,
in survival analysis, there are more than 60 million Medicare beneficiaries across 40 thousand
ZIP Code areas in United States from 2000 to 2012, which is up to 5.7 billion person-months
of follow-up. In multi-label classification, Wikipedia data contains more than 500 thousand
labels, millions of features and instances. For many of such datasets, machine learning
models are facing unprecedented challenges associated with effectiveness and efficiency in
both time and memory. This thesis aims to develop learning models that scale well on large
data while being able to maintain or even increase its level of performance based on the
inherent structures of the dataset and learning algorithms. By working on the following
key questions for each model: 1) how to adapt to the intrinsic structure of the dataset and
2) how to take into account the special design of the learning formula and algorithm, we
develop state-of-the-art algorithms for both regression and classification problems, and scale
such algorithms well on multiple real-world datasets, such as millions of Medicare enrollees
in survival analysis, Wikipedia articles and Amazon products categorization in multi-label
classification.

iii





Contents

Abstract iii

Contents v

1 Introduction 1

2 Extreme Multi-label Classification 3
2.1 Label Set Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Related Work for Optimizing F-Measure . . . . . . . . . . . . . . 7
2.1.3 A Wrapper for Optimal F-measure . . . . . . . . . . . . . . . . . . 8
2.1.4 Compactness and Sparsity in CBM . . . . . . . . . . . . . . . . . 10

2.2 Label Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Related Work for Label Ranking . . . . . . . . . . . . . . . . . . . 14
2.2.2 Ranking-based Autoencoder . . . . . . . . . . . . . . . . . . . . . 16

3 Survival Analysis 19
3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Contribution and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Introduction to Cox Proportional Hazard Model . . . . . . . . . . . 21
3.3.2 Compactness in Data . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Cox PH model with Compact Data . . . . . . . . . . . . . . . . . . 23
3.3.4 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Timeline 27

Bibliography 29

A Cox Proportional Hazard Model 35

v



vi Contents

B Supplemental for Cox Proportional Hazard Model 41



Chapter 1

Introduction

Machine learning (ML) has grown rapidly in popularity in the past two decades, and is
almost everywhere nowadays. By employing ML algorithms, computer is able to detect
patterns and make decisions based on the historical and real-time data. It is obvious that
ML has a significant impact on a variety of industries and researches. The field of ML
has improved companies’ operating efficiency and profitability [1], and also has a broad
range of effects across sundry disciplines, including but not limited to public health, policy,
biology, finance, neuroscience and etc., that utilize ML to analyze and learn from data [2, 3].
Furthermore, accompanied with the increasing business scale and data accumulation, we are
witnessing the big data era and some of us have to run analysis to obtain useful insights
and make right decisions from such large datasets. With abundant data, on the one hand,
ML algorithms are more guaranteed to extract underlying patterns and generalize better; on
the other hand, it becomes harder for many ML algorithms to tackle the computationally
tractable and underperforming issues.

Motivated by the new opportunities and challenges with the big data ascent, we aim to
develop ‘smart’ learning techniques, efficiently and effectively, for large-scale data to obtain
underlying knowledge, trends and patterns. It is worth emphasizing that we focus on two
most common supervised learning tasks: classification and regression. More specifically,
we address the large-scale data learning problems by follows:

• Utilizing the inherent structures of the given data, such as compactness and sparsity;

• Exploiting the intrinsic properties of the learning objective and turning it to tractable
learning process, such as class imbalance and mixture structures.

• Further improving performance by designing a faster multi-label wrapper on top of
single-label learning methods.

Following the above key ideas, we develop such ‘smart’ machine learning algorithms
for two main real-world applications: Multi-label classification in text categorization and
image object recognition, and regression in Survival Analysis to estimate the association
between air pollution and mortality in epidemiological study. Since those two problems are
totally disparate domains and the methodologies are different as well, we split them into two
chapters for making the content more reader-friendly. Extreme Multi-label Classification and
Survival Analysis can be found in Chapter 2 and Chapter 3 respectively. For each application,
we introduce its background, along with its essential challenges in the task with large-scale
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2 Introduction

dataset, and also review current popular state-of-the-art methods that may overcome partial
of those challenges. In the end of each chapter, we present our key ideas and contribution,
which further overcomes the challenges and maximizes the benefit for algorithms.



Chapter 2

Extreme Multi-label Classification

In multi-label classification (MLC) [4, 5], a classifier is trained on instances, each of which
is associated with a set of labels, and then is used to predict the label sets of unseen instance
with known labels. The difference between multi-label classification and binary / multi-class
classification is that in the later problems, the number of labels is restrict to one, thus la-
bels are mutually exclusive, whereas in MLC tasks some of labels can be mutually exclusive
and others may be highly correlated. Multi-label classification, as one of the most impor-
tant machine learning tasks, is omnipresent in real-world applications, especially in Internet
industries. For example, in Wikipedia, each article is tagged by several topics; for any recom-
mendation system, one is expected to predict the most relevant items (songs, movies, news
and products) for a user; in the movie / television database system, one film is associated
with multiple genres; in an image object detection, more than one object can be identified. In
these classification tasks, labels often exhibit complex dependencies: for example, in movie
genres, Documentary and Sci-Fi are usually mutually exclusive movie genres, while Horror
and Thriller are typically highly correlated. Therefore, predicting labels independently fails
to capture these dependencies and suffers suboptimal performance [4, 6, 7]. In the early
stage of solving MLC, several methods, which only focus on capturing label dependencies,
have been proposed, including Conditional Random Fields (CRF) [6, 8], Classifier Chain
(CC) [9, 10] and several neural networks, such as Structured Prediction Energy Networks
(SPEN) [11], and Canonical Correlated AutoEncoder (C2AE) [12]. However, these meth-
ods are typically only work well on small-to-medium scale multi-label datasets due to their
sophisticated model structures for capturing correlations between labels.

Because the ubiquity of MLC in Internet industries, accompanied with the increasing
business scale / scope and data accumulation, extreme multi-label classification (XML) is
more and more on demand. XML is such a multi-label classification task in which the
size of features, instances and labels are very huge, often on the order of thousands to
millions [13, 14]. As a side note, it is assumed that either all three (a large number of features,
instances and labels) or any one of them needs to be met for multi-label classification as a
XML problem. For example, as a online movie database, IMDb1 contains approximately 5.3
million titles (including episodes) by 20182, while the label vocabulary (movie genres) size is
still under a hundred. Another example of Wikipedia multi-label data with social tags [13],
wherein the tags are aggregated by different users in a collaborative way, includes thirty

1www.imdb.com
2https://en.wikipedia.org/wiki/IMDb
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Figure 2.1: Label Imbalance on Wiki10-31K and AmazonCat-13K Datasets. The x-axis
presents the percentage of instances in which each label is present. y-axis stands for the
probability of labels located in that bar. For example, the first bar of Wiki10-31K plot says
that more than half labels are present in 0.01% documents, and the second bar says that more
than 10% labels are only present in 0.02% documents.

thousand labels tagged by users but only twenty thousand instances available. The number
of features, for these two examples and general text categorization, is usually the vocabulary
size, varying from thousands to millions. Such large scale datasets require efficient and
feasible multi-label methods.

With the increasing scale of multi-label datasets, efficiency and feasibility become not
the only challenge for learning algorithms. A series of issues of data quality have also been
discovered, including data complexity, label noise and imbalance etc. Besides, with the in-
creasing significance of large-scale multi-label in different domains, people apply multi-label
classifiers to solve their specific tasks, leading to a diverse array of evaluation metrics. By
investigating all those challenges of utilizing extreme multi-label classification for practi-
tioners, we lay out five fundamental challenges for XML algorithms:

1. Efficiency and Feasibility. With rapid data accumulation, whether a multi-label clas-
sifier is feasible and efficient enough turns to be the essential challenge above oth-
ers. For example, Youtube-8M3 data has millions of data points, billions of audio /
visual features and roughly 4 thousand classes. Delicious-200K [15], a social book-
mark dataset, contains 300 thousand instances, 780 thousand features and 200 thou-
sand labels. Training such large dataset, even with the simplest method Binary Rel-
evance (BR: one-versus-rest), gets to be intractable with linear computational cost in
#data×#features×#labels [16] . Even though one can efficiently train BR model,
he / she may probably encounter memory and storage issues for the linear complexity
of model in #features ×#labels, especially when both the number of features and
labels are on the sheer magnitude. One simple but effective way is to apply feature
reduction techniques to compress model, leading to sparse model solution, which can
be utilized to in turn accelerate training procedure [16, 17].

2. Label Dependencies. The second major challenge of XML is to capture the label de-
3https://research.google.com/youtube8m/index.html

https://research.google.com/youtube8m/index.html
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pendencies. Usually, label sets for given instance exhibit complex dependency struc-
tures, for instance including mutually exclusive relation (Documentary vs Sci-Fi) and
strong dependence (Horror vs Thriller) in movie genres. So independent predictions
per label (Binary Relevance method) is unlikely to work well [4, 6, 7]. Recently,
researchers in machine learning are formalizing these dependencies explicitly or im-
plicitly, aiming to design algorithms that are either provably or practically effective
to improve the overall performance [18]. It is worth noting that most of the pro-
posed algorithms estimate the label dependencies from data during the training pro-
cess [6, 7, 10, 11], which is the major efficiency bottleneck and is also why those com-
plicated algorithms are only suitable to small-to-medium scale multi-label datasets. On
the other hand, in order to make algorithms feasible for large scale datasets, machine-
learning practitioners normally neglect the label dependencies and train classifiers for
labels independently [16, 19–22], however, yielding to suboptimal performance.

3. Label Noises. Label noises are frequently observed in extreme multi-label data [23–
25], especially for large collection of labels. Since the label vocabulary is large and
mistakes by human annotators are inevitable, it is quite common for an annotator to
miss some relevant tags out of a large collection of labels. And another situation for
a human annotator, but less common, is to tag some invalid labels. As far as we
are concerned in this thesis, the most frequent multi-label noises comprise both of
these two noises or either one of them. With noise labeling data, sometimes when the
classifier’s prediction (which might be correct) disagrees with the annotation, one can
potentially assign an unbounded penalty to the classifier during training procedure.

4. Label Imbalance. Although the label vocabulary is large, typically each instance only
matches a few labels. In other words, some labels are irrelevant to more instances than
other labels, called label imbalance, demonstrated in Figure 2.1. The label imbal-
ance problem exists in both small-to-medium scale and large scale multi-label data.
However, most of the current multi-label classifiers ignore such issue, leading to per-
formance degradation [26, 27].

5. Task-Specific Metric. There exist many different evaluation metrics for multi-label
classification, such as hamming loss, subset accuracy, F-measure, ranking-based met-
rics and so on [5]. First, hamming loss (HL), a fraction of the wrong labels to the total
number of labels, is often optimized by binary relevance method [7, 18]. Since the
optimal classifier for HL simply predicts each label independently, it fails to capture
instinct label dependencies in multi-label datasets. Besides, another major disadvan-
tage of HL is that it totally ignores label imbalance. As mentioned above, each instance
often matches a few labels out of huge number of classes, thus simply predicting each
instance an empty set could also achieve a decent hamming loss. Although this is a
statement of fact, most of current popular and efficient extreme multi-label classifiers
are essentially binary relevance methods [16, 19–22]. On the other hand, the subset
accuracy measure, aiming for label dependencies, gives for each instance a score of
1 if the exact label set is predicted and 0 otherwise, and it is usually optimized by
maximum likelihood over sets. Typically, methods for optimizing the likelihood over
label sets do not scale to large datasets due to the exponential number of potential la-
bel subsets. Furthermore, with large number of label candidates, matching the exact
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label set is a insoluble task. Therefore, in practice, the F-measure, which gives partial
rewards for subset predictions based on overlap with the correct subset, is much better
suited for many multi-label tasks than strict subset accuracy. For example, in a medical
note, a patient may present with multiple illness or undergo a procedure with multiple
billing codes; predicting five out of six codes correctly is a considerable help to medi-
cal billing systems. At last, the ranking-based metrics (e.g. precision and nDCG [14]),
which are based on the fraction of correct predictions in the top predicted scoring
labels, have also been heavily favored in industries, especially for recommendation
systems.

For a better story structure, we divide the work into two parts based on these two specific
tasks: set prediction and ranking, since they involve different related works, measure metrics
and methodologies. We will first introduce set prediction related work, our contribution and
future work, and then focus on ranking related tasks.

2.1 Label Set Prediction
For tag/label set prediction task, the classifier is asked to return all relevant labels for a given
document. This is often more difficult than ranking tasks, as the classifier not only needs
to compute the relevance of each label w.r.t the given instance, but also needs to make a
final decision on how many labels and which labels to be included in the predicted set. This
decision in general cannot be simply made by picking the top K labels with the highest
relevance scores, as the number of relevant labels per instance varies a lot and thus this
prediction strategy may be suboptimal for some evaluation metrics, like set accuracy and
F-measure.

2.1.1 Notation
Formally, in a multi-label classification problem, we are given a set of label candidates
Y = {1, 2, . . . , L}. The dataset consists of features and labels: {(xi,yi)}Ni=1, wherein N
is number of data, and each instance x ∈ RD (D is the feature dimension) matches a la-
bel subset y ⊆ Y , which can be written as a binary vector y = {0, 1}L, with each bit yl
representing the presence or absence of label l. Given such dataset, our goal is to build a
multi-label classifier y = C(x): RD → {0, 1}L, mapping an instance to a subset of labels.
And the size of label subset y can be of arbitrary integer number, written as |y| ∈ [0, L].

One common way to evaluate the multi-label classifier is called set accuracy, which
measures the predicted label set y exactly matches the ground truth set y:

Acc(y,y′) = I(y,y′) (2.1)

Set accuracy is often used when label size is small and predicting label set is desired. For
example in Movie genre prediction, predicting all the relevant movie genres is adopted. How-
ever, set accuracy, exactly matching ground truth set, becomes impractical when label size
is getting larger. In this case, F-measure is often more favored by practitioners than other
metrics. Thus, in our tag/label set prediction tasks, we focus on optimizing F-measure and
scaling it well on large scale dataset.
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2.1.2 Related Work for Optimizing F-Measure
It has not escaped our notice that most of current extreme multi-label classifiers ignores la-
bel dependencies but can be trained for each label independently in parallel, and thus are
computationally efficient in practice. However, ignoring the label dependencies limits the
prediction accuracy, especially when the desired measure metric is not decomposable over
individual labels. In practice, one of such non-decomposable metrics is instance-F1, as-
signing partial credits for subset predictions based on overlap with the correct subset and
handling label imbalance well. Instance-F1 has been widely employed for tag/label predic-
tion in industries, such as the Yelp business categorization [28] and the Greek Media [29].
The F1-measure for each instance is defined as

F (y,y′) =
2
∑L

l=1 yly
′
l∑L

l=1 yl +
∑L

l=1 y
′
l

(2.2)

which is the harmonic mean between precision and recall. The reported instance-F1 is the
average of F1-measure values over test instances. It is worth noting that instance-F1 is
different from macro-averaged F-measure (macro-F1), which computes the F1-measure
for each binary label across the test set first and then averages across labels. Since macro-
F1 is decomposable over labels, obviously, optimizing macro-F1 suffices to maximize the
binary F1-measure for each label separately [30, 31]. In this proposal, we only focus on
instance-F1 measure.

There exist a few methods which explicitly take into account the F1 metric during train-
ing [32–34], but most of the popular methods that provide a joint estimation in the form of
p(y|x) are trained by standard maximum likelihood estimation without considering F1 met-
ric as objective. For such methods, it is still possible to use an F1 optimal prediction strategy
post-training, that is, output y∗ which maximizes the expected F1 score:

y∗ = arg max
y′

Ey∼p(y|x) [F (y,y′)]

= arg max
y′

∑

y

p(y|x)F (y,y′) (2.3)

Besides, for most of multi-label classifiers, training time is usually the bottleneck, thus
post-training strategy is more attractive for extreme multi-label classification tasks. The
General F-measure Maximizer (GFM) [35] is first proposed to find the instance-F1 optimal
prediction (y∗) for a given instance based on probability estimations. However, the GFM
algorithm does not work directly with a joint estimation p(y|x), but rather, some L2 marginal
distributions (defined in Eq (2.4)), which can be read as “the probability of the given instance
having s relevant labels and yl is one of them”.

p(yl = 1,|y| = s | x),∀l,∀s ∈ {1, . . . , L} (2.4)

The original paper [35] proposes two ways of obtaining these L2 marginals (probabilities
per instance): I) a model which directly estimates L2 marginals from data, and II) the use
of a probabilistic joint classifier/estimator p(y|x) and sampling to generate the required L2

probabilities. However, we find that option I) is very difficult, perhaps unsolvable although
it is indeed appealing as a theoretical exercise; the option II) sampling method is neither
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Algorithm 1 General F-Measure Maximizer with Support Inference

1: Input: support sets Y and joint estimation p(y|x) ∀y ∈ Y
2: Marginalize p(y|x) to obtain P ∈ RL×L matrix, wherein pls = p(yl = 1, |y| = s|x)
3: Compute p(y = 0|x)
4: Define W ∈ RL×L matrix with ws,k = 2

s+k

5: Compute ∆ = PW ∈ RL×L

6: for s = 1, 2, ..., L do
7: Compute ys with ysl = 1 if l ∈ ranks(∆s), otherwise ysl = 0 for l = 1 . . . , L
8: Compute E[F (y,ys)] =

∑L
l=1 y

s
l ∆ls

9: Let E[F (y,y0)] = p(y = 0|x)
10: Output: y∗ = arg max0≤s≤LE[F (y,ys)]

efficient nor effective, for large number of labels and in particular low-confidence (flat) joint
that allows probability mass to spread over many label combinations.

There are several approaches that seek to optimize the F-measure directly during train-
ing. [34] provides an up-to-date overview on different F-measure maximization methods.
[36] uses a graph-cut algorithm and has poor scalability on high dimensional text datasets.
There are two methods that use a cost-sensitive approach to optimize F-measure score dur-
ing training, such as Condensed Filter Tree method (CFT) [37] and the cost-sensitive label
embedding with multidimensional scaling method (CLEMS) [38], both of which perform
poorly and their training are also slow on large datasets. [33] studies F-measure maximiza-
tion with conditionally independent label subsets. This method has a strong assumption
which makes it hard to apply to real data.

2.1.3 A Wrapper for Optimal F-measure
In our work [39], we focus on tag/label prediction metric instance-F1 with medium-to-large
scale multi-label text datasets, such as medical billing codes, movie genres, review objects,
patent classification and news categorization. Our main work is based on the General F-
measure Maximizer (GFM) method [35]. The original GFM is proposed to either directly
estimate L2 marginals from data (we name it as LSF) or use a probabilistic joint classifier
p(y|x) to sample the required L2 probabilities (GFM-sample). However, the first option of
estimating L2 marginals directly performs poorly in practice. Our speculation is that even
though we can use logistic regression to estimate p(yl = 1, |y| = s | x) directly, predicting
the number of relevant labels |y| by a classifier is a very hard and unnatural task. The
second proposed sampling method by the use of a joint estimation p(y|x), in practice, is
neither efficient nor effective. It turns out that for large number of labels, sampling usually
generates low-confidence (flat) joint that allows probability mass to spread over many label
combinations.
[Our Contribution]. We instead develop an efficient solution based on the sampling strat-
egy with a critical change, after training the joint estimator p(y|x), we derive the required
L2 marginals using support inference. With support inference, one can limit the space of
possible label sets y to only the observed ones in the training set, and evaluate their probabil-
ities and then marginalize. These marginals are then fed into GFM to produce the F1-optimal
prediction, see Algorithm 1.
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Method Bibtex IMDb Ohsumed RCV1 WISE WIPO
SPEN 39.0 61.1 61.7 65.3 - 65.9

PDsparse 40.7 62.3 67.3 75.0 74.5 67.5
CFT 23.5 - - 53.5 - 62.7

CLEMS 42.5 - 52.6 72.4 - 67.1
LSF 43.9 59.8 65.0 73.6 76.7 71.1

BR+GFM-Sample 40.2 61.0 64.3 74.9 73.0 70.0
CBM+GFM-Sample 40.4 64.8 65.4 77.9 73.6 70.3
BR+GFM-Support 48.1 63.8 71.0 76.1 80.1 68.0

CRF+GFM-Support 49.5 67.1 70.5 76.1 79.4 72.5
CBM+GFM-Support 50.4 66.2 72.6 78.7 81.5 71.3

Table 2.1: F-measure comparisons with other methods. Note: ‘-’: indicates failed runs with
56 core and 256GB RAM. The statistics of datasets are shown in [39].

In our previous work [39], we demonstrate that, even with the simplest model (binary
relevance (BR)), one can train the model using the existing and feasible algorithms, but only
take into account the target measure during the prediction. In addition to BR method, we
adopt some other multi-label classifiers, such as Conditional Bernoulli Mixture (CBM) [7]
and Conditional Random Fields (CRF) [6], and apply GFM with support inference post-
training procedure on top of them. Our experiments show that GFM with support inference
work extreme well with all those multi-label classifiers and can outperform recent sophisti-
cated methods (PD-sparse [16], SPEN [11]) and models (GFM-Sample, LSF [35], CFT [37]
and CLEMS [38]) designed specifically to be multi-label F-optimal (see Table 2.1).

We highlight the support inference, which not only allows us to infer the required marginals
from the joint, but also provides some additional regularization effect on the label structures.
With support inference, we have put all the probability mass on only support combinations,
and give an infinite strong prior which regularizes the posterior to only consider observed
label sets. Besides, using these limited number (usually no more than a few thousands for
medium-to-large scale multi-label text datasets) of support label sets and their associated
probabilities, we can then easily and efficiently infer the label set y∗ for optimal instance-F1.
Admittedly, support inference has the limitation in that no new label combination will be
considered during marginalization. However, this limitation of support inference by itself
is largely mitigated by GFM procedure, which could potentially be an unobserved label set
y∗ /∈ Y .

The proposed algorithm of GFM with support inference can be an extension to any given
probabilistic multi-label classifiers, as long as the joint p(y|x) can be estimated. The algo-
rithm is a post-training method and independent from model training, which costs no extra
time in training. Moreover, although Algorithm 1 has a worse case complexity of O(L3) in
prediction time, it can be reduced to O(LT 2), wherein T is the average number of labels
per instance. Because in practice, each instance only matches a few labels out of L labels,
T is usually bounded up to 10. In another word, the complexity of the Algorithm 1 can be
reduced to linear time in O(L), thus GFM with support inference is very efficient even for
dataset with large L.
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2.1.4 Compactness and Sparsity in CBM
[Our Contribution]. In our previous work [7], we propose the Conditional Bernoulli Mix-
tures (CBM) model, which also aims to optimize the likelihood over set prediction. The
model represents the joint as a mixture of K components, each with independent label clas-
sifiers, with the following form:

p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

l=1

b(yl|x;βkl ), (2.5)

wherein the multi-class classifier, e.g. a Multinomial logistic regression π decides the mixing
coefficient for each mixture component. Inside each component, the joint is factorized into
marginals, estimated by L binary classifier b, e.g. binary logistic regression. After the joint
estimation with π, the joint p(y) is not a product of marginals anymore. In other words,
labels are not independent and thus the label dependencies can be captured by CBM.

Since the model contains hidden variables, both the multi-class classifier and the binary
classifiers can be trained jointly by Expectation Maximization (EM) algorithm, which mini-
mizes the the negative log likelihood:

N∑

i=1

KL(Γ(zi)||π(zi|xi;α)) +
K∑

k=1

L∑

l=1

N∑

i=1

γki KL(Ber(Yil; yil)||b(Yil|xn;βkl )) (2.6)

wherein capital Y indicates the unknown random labels, while lowercase y is the specific
labels from training data; Γ(zi) = (γ1

i , γ
2
i , . . . , γ

K
i ) is the posterior membership distribution

p(zi|xi,yi); Ber(Yil; yil) is the Bernoulli distribution with head probability yil.
During the training procedure, we apply EM by following:
E Step: Estimate the posterior membership probability of each instance (i) from each

component (k):

γki =
π(zi = k|xi;α)

∏L
l=1 b(yil|xi;βkl )∑K

k=1 π(zi = k|xi;α)
∏L

l=1 b(yil|xi;βkl )
(2.7)

M Step: Update parameters for α and βkl , ∀l ∈ {1, . . . , L} ∀k ∈ {1, . . . , K}, which can
be perfectly decomposed into a series of separate optimization problem:

αnew = arg min
α

N∑

i=1

KL(Γ(zi)||π(zi|xi;α)), (2.8)

βkl new = arg min
βk
l

N∑

i=1

γki KL(Ber(Yil; yil)||b(Yil|xi;βkl )) (2.9)

The optimization problem in (2.8) is essentially a multi-class classification problem with
a soft target class distribution Γ(zi), while (2.9) is a weighted (membership estimation from
E Step) binary classification problem for each label l in component k.

The original work [7] has demonstrated the effectiveness of CBM against current com-
petitive methods, such as Classifier Chain [9, 10], Conditional Random Fields [6] and so on.
However, one major issue of CBM is the computational complexity inO(KLDN), which is
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Dataset D L N N of Test inst/label Cardinality time (hour) memory(GB)
Bibtex 1,836 159 4,880 2,515 111.71 2.4 0.002 1
Mediamill 120 101 30,993 12,914 1902.15 4.38 0.009 3
Delicious 500 983 12,920 3,185 311.61 19.03 0.036 10
EURLex-4K 5,000 3,993 15,539 3,809 25.73 5.31 0.178 50
Wiki10-31K 101,938 30,938 14,146 6,616 8.52 18.64 1.253 350
RCV1-2K 47,236 2,456 623,847 155,962 1218.56 4.79 4.388 1,226
AmazonCat-13K 203,882 13,330 1,186,239 306,782 448.57 5.04 45.287 12,651
Delicious-200K 782,585 205,443 196,606 100,095 72.29 75.54 115.68 32,313
AmazonCat-14K 597,540 14,588 4,398,050 1,099,725 1330.1 3.53 183.75 51,330
Amazon-670K 135,909 670,091 490,449 153,025 3.99 5.45 941.235 262,917
WikiLSHTC-325K 1,617,899 325,056 1,778,351 587,084 17.46 3.19 1655.565 462,452
Wikipedia-500K 2,381,304 501,070 1,813,391 783,743 24.75 4.77 2602.318 726,910
Ads-1M 164,592 1,082,898 3,917,928 1,563,137 7.07 1.95 12151.071 3,394,176
Amazon-3M 337,067 2,812,281 1,717,899 742,507 31.64 36.17 13836.52 3,864,973
Ads-9M 2,082,698 8,838,461 70,455,530 22,629,136 14.32 1.79 1783455.494 498,174,810

Table 2.2: Datasets Characteristics. D: number of features, L: number of labels, N: number
of training samples, N of Test: number of test points, inst/label: the average number of train-
ing instances per label, Cardinality: the average number of labels per instance, time (h): es-
timated training time for CBM based on its time complexity (O(KLDN)), memory (GB):
estimated running memory for CBM training based on its model complexity (O(KLD)).
The estimation is based on K = 20 in CBM.

K times slower than Binary relevance method (O(LDN)). Besides, the model complexity
of CBM (O(KLD)) is at least K times larger than BR method in O(LD), which further
forbids CBM to scale on the large-scale datasets. Because the time complexity of Multino-
mial logistic regression is O(KDN), which is much smaller than the complexity of binary
classifiers O(KLDN) for large L thus is eliminated here, and the same to model complex-
ity. Consequently, whether one can solve the training time and memory consumption in
binary classifiers will be the bottleneck, determining where computational resources should
be focused.
[Proposed Work]. For the large scale datasets, we can approximate the CBM running time
and memory according to its complexity, see Table 2.2 4. When the number of labels exceeds
10 thousand, the estimated running time can be over than 50 hours and the memory may take
up to hundred gigabit even with a small number of clusters (K = 20). Therefore, currently
CBM is only able to work on datasets with small number of labels and reasonable data scale.
However, this proposal will demonstrate CBM has a potential to be extended to larger scale
datasets while being able to maintain its performance. We will exploit the sparsity in the
CBM structure regarding to solve the time and memory efficiency issues respectively.

Compactness in CBM. In CBM (see Eq (2.5)), each component is forced to train a sep-
arated binary classifier for each label l, thus K different binary classifiers for l are generated,
which is parameterized by βkl ∀k = {1, . . . , K}. It is quite natural to ask: if CBM really
needs to buildK different binary classifiers for each label. In practice, we have the following
interesting observations on CBM model:

1. Most of the labels only belong to few specific clusters found by CBM. In other words,
only few binary classifiers per label are activated. Therefore, we could assume the

4 The datasets can be found from this Extreme Multi-Label Repository:http://manikvarma.org/
downloads/XC/XMLRepository.html

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
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rest of inactive binary classifiers provide 0 probability in b(yl|x;βkl ) for k ∈ inactive
clusters for label l.

2. During training, each binary classifier of label l in cluster k is only trained on a partial
data with membership γki is larger than 0. However, we observe that most of the data
point only belong to part of the clusters. Therefore, with the label imbalance fact, each
cluster may not get enough training samples, especially positive instances, thus CBM
may fail to estimate the binary classifier in that component.

Inspired by the above two observations, we can train the CBM model in the following
form with shared a binary classifier per label:

p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

l=1

b(yl|x, z;βl), (2.10)

To differentiate the binary classifier among different components, we concatenate the feature
xwith the component indicator as a binary vector z. Comparing (2.10) with (2.5), each label
classifier is forced to share the same parameters from the features x part, while at the same
time take account for the distinct adjustment inside each component from z. With the new
formula, one can have significant memory saving and avoid the data scarcity problem:

1. The model complexity has been reduced toO(KD+L(D+K)), which can be written
as O(LD) because K << L&K << D in general, which is very attractive because
of the same model complexity as binary relevance method.

2. The label l binary classifier now is trained on the instances that not just appear in one
cluster but all clusters. This is a very effective way to utilize the positive instances for
a label, alleviating the previous label imbalance issue among each component.

Surprisingly, by shrinking K binary classifiers into one single shared parameterized one,
we not just reduce the model complexity, but also have significant speedup that we did not
expect. First, this new model does not affect the E step and αnew optimization in M Step,
thus we can only focus on training binary classifiers with logistic regression function:

b(Yil = 1|xi, z) =
1

1 + exp
{
−
[∑D

d=1 β
d
l x

d
i +

∑K
k=1 β

k+D
l zk

]} (2.11)

According to Eq (2.9), we aim to minimize the following objective function for each
label l respectively:

`l =
K∑

k=1

N∑

i=1

γki log b(yil|xi, z;βl) (2.12)

wherein the gradient can be computed as:

∂`l
∂βdl

=
N∑

i=1

yilx
d
i −

N∑

i=1

xdi

K∑

k=1

γki b(Yil = 1|xn, z) ∀d ∈ {1, . . . , D} (2.13)

∂`l

∂βk+D
l

=
N∑

i=1

yilγ
k
i −

N∑

i=1

γki b(Yil = 1|xn, z) ∀k ∈ {1, . . . , K} (2.14)
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The training complexity has been reduced to O(LN(D + K)), which is surprisingly equiv-
alent to Binary Relevance method O(LND) since usually K << D. Thus, increasing the
number of components is not necessary to have a linear increase in training time.

Sparsity in CBM. Even the complexity of CBM can be reduced to the same as binary
relevance, for XML datasets with millions of labels / features / instances, a sub-linear time
complexity is still highly demanded. We realize sparsity in CBM model, which can be further
used as a practical way to massively speed up the model training. More specifically, we can
further save the computation based on the sparsity of the output γki . In practice, we observe
that the posterior membership probability of each instance is very sparse, meaning that for
most of the components γki equals or extremely closes to zero. Considering CBM with shared
parameters that increasing components without sacrificing training time and memory, we can
further produce a sparser γ ∈ RN×K matrix with larger K. Noticing the model formula, we
do not need to consider such points within that component if the posterior probability is close
to zero γk ≈ 0. As a result, within a component k, the actual number of training instances
Nk can be much smaller than N . One simple and efficient way to implement this sparsity is
to only keep the top K̂ posterior probabilities for each instance. In this case, each instance is
forced to belong up to K̂ components. Suppose each component receives similar numbers of
training samples, the number of instances in a component can be reduced by a factor K̂

K
, e.g.

Nk ≈ K̂
K
N . Therefore, the CBM’s complexity can be theoretically reduced to O(LNkD),

wherein Nk ≈ K̂
K
N . Again, with a larger number of components K, it not only increases the

model capacity, but also reduces the training samples within each component thus is more
effective.

Furthermore, we notice that the reduction factor K̂
K

is not a best solution when having
label imbalance issues in the datasets, see Figure 2.1. In CBM, the primary time consumption
is to train each label a binary classifier. Due to the label imbalance, each label usually does
not have enough positive instances for training, in other words, the majority of the instances
is negative samples. One simple way is to apply undersampling technique, which randomly
removes negative samples from each component. The undersampling strategy for negative
instances can be easily further improved by considering the instance weight γki among all
other negative instances weights:

pil =
γki∑

n:ynl=0 γ
k
i

∀i : yil = 0. (2.15)

We have implemented the sparse version of CBM, based on the proposed sparsity in
CBM. The preliminary results (see Table 2.3) show the training time (in seconds) compar-
isons between BR and sparse CBM on 6 multi-label datasets (Table 2.2). First, sparse CBM
can achieve less training time than BR, especially on datasets with larger number of labels.
Besides, by exploiting the sparsity inherent in CBM structure, CBM has training time grow-
ing sub-linearly with number of labels while keeping competitive performance.

With binary / Multinomial logistic regression as the base leaner in CBM and the success
of sparse optimization techniques [16, 17] in extreme classification, we can also extend such
techniques to CBM base learners, which can achieve sub-linear complexity in both number
of features and instances.
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Training Time (seconds)
Bibtex Delicious Mediamill EURLex-4K RCV1-2K Wiki10-31K

BR 5 50 20 1800 5600 9300
Sparse-CBM 8 40 60 900 1800 2200

Precision@1
BR 0.644 0.673 0.838 0.718 0.904 0.854
Sparse-CBM 0.651 0.675 0.845 0.794 0.900 0.820

Table 2.3: Training time and Precision performance comparisons between Binary Relevance
(BR) and Sparse CBM. The time is reported in second. K = 20 is fixed in Sparse-CBM. Pre-
cision@3 and Precision@5 have similar conclusion with Precision@1, thus are eliminated
here.

2.2 Label Ranking
As the size of labels increases, predicting a label set often becomes impracticable, wherein
even F-measure may approximate to zero. In this section, we focus on the ranking tasks,
which are more popular in practice when label size is extreme large.

2.2.1 Related Work for Label Ranking
In the extreme multi-label classification (XML), most of the models focus on tag/label rank-
ing tasks since the size of label collection is large. Ranking metrics [14, 40], such as Preci-
sion at top K (P@K) and the Normalized Discounted Cummulated Gains at top K (n@K),
are more practicable than predicting label set out of a large range of labels, thus they have
been widely used in XML. With the increasing scale of labels, data quality issues, such as la-
bel noise and imbalance, are getting more unfavorable. The fundamental data illness issue as
well as efficiency problem, have been addressed partially by researchers in the literature. We
group them into different categories and describe representative methods in each category.

P@K =
1

K

∑

l∈rankK(ŷ)

yl (2.16)

DCG@K =
∑

l∈rankK(ŷ)

yl
log(l + 1)

(2.17)

nDCG@K =
DCG@K

∑min(K,|y|)
l=1

1
log(l+1)

(2.18)

(wherein the rankK returns K largest indices of the prediction ŷ in a descending order, and
|y| is the number of positive labels in ground truth.)

Binary Relevance Methods: A popular method is to divide the multi-label classifi-
cation problem into multiple binary classification problems [4, 16, 19, 20, 41]. A typical
implementation is to treat labels independently and train one-vs-all classifiers for each of the
labels. These independent classifiers can be trained in parallel and thus are computationally
efficient in practice. Ignoring the inter-label dependency also enables efficient optimization
algorithm, which further reduces computational cost. However, ignoring label dependency
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inherently limits prediction accuracy. A competitive method in this category is called PD-
Sparse [16], with a variant of the Block-Coordinate Frank-Wolfe training algorithm that
exploits data sparsity and achieves complexity sub-linear in the number of primal and dual
variables. PD-Sparse [16] shows better performance with less training and prediction time
than 1-vs-all Logistic Regression or SVM on extreme multi-label datasets.

Tree Based Classifiers: Following the success of tree-based algorithms in binary clas-
sification problems, people also proposed tree-based algorithms for multi-label classifica-
tion [40, 42, 43], which achieve promising prediction accuracy. Similar to decision trees,
these methods make classification decisions in each branch split. Different from decision
trees, each split evaluates all features, instead of one, to make a decision. Also, each decision
is for a subset of labels rather than one label. Finally, via ensemble and parallel implementa-
tion, trees can boost their prediction accuracy with practically affordable computational cost.
Among these tree based classifiers, FastXML [40] further optimizes an nDCG-based ranking
loss function and achieves significantly higher accuracy than other peer methods.

Embedding: A major difficulty of extreme multi-label classification is the large number
of labels. When labels are inter-dependent, one can attempt to find a lower dimensional la-
tent label space from which one can fully reconstruct the original label space. Over the past
decade, many methods were proposed to find this latent label space. In early work, meth-
ods were proposed to linearly project the original label space into a lower-dimension space
and reconstruct predictions from that space [44, 45]. However, there are two assumptions:
(1) the label dependency is linear and (2) the label matrix is low-rank, which do not always
hold, as reflected by the low prediction accuracy of these methods. To overcome the limita-
tion of the linear assumption, different methods were proposed using non-linear embeddings,
including kernels, sub-sampling [24], feature-aware [12, 46] and pairwise distance preserva-
tion [14]. Among these methods, SLEEC [14] stands out for less training time and higher
accuracies. SLEEC introduces a method for learning a small ensemble of local pairwise dis-
tance preserving embeddings which allows it to avoid the low-rank and linear-dependency
assumption.

Deep Learning: Deep learning has not been well studied for XML, although it has
achieved great successes in binary and multi-class classification problems [47, 48].

FastText [49] reconstructs a document representation by averaging the embedding of
the words in the document, followed by a softmax transformation. It is a simple but very
effective and accurate multi-class text classifier, as demonstrated in both sentiment analysis
and multi-class classification [49]. However, FastText may not be directly applicable for
more complicated problems, like XML.

BoW-CNN [50] learns powerful embedding of small text regions by applying CNN to
high-dimensional text data. The embedding of all regions are sent to one or multiple convo-
lutional layers, a pooling layer and the output layer at the end.

XML-CNN [51] achieves computational efficiency by training a deep neural network
with a hidden bottleneck layer much smaller than the output layer. However, this method
has a few drawbacks. First, it is trained using the binary cross entropy loss. This loss
tends to be sensitive to label noise, which is frequently observed in extreme multi-label data.
Since the label vocabulary is large, it is quite common for human annotator to miss relevant
tags. When the classifier’s prediction (which might be correct) disagrees with the annotation,
the cross entropy loss can potentially assign an unbounded penalty to the classifier during
training procedure. The second issue is that because labels are trained independently as
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separate binary classification tasks, their prediction probabilities/scores may not be directly
comparable. This is problematic because in many applications the requirement is to rank all
labels according to their relevance, as opposed to making an independent binary decision on
each label.

2.2.2 Ranking-based Autoencoder

In this work [52], we concentrate on tag/label ranking metrics with large scale multi-label
datasets, such as image object detection, Wikipedia article tagging and products categoriza-
tion. In those problems, the number of potential labels is usually from tens of thousands to
hundreds of thousands. A method, even with linear complexity in the number of labels (bi-
nary relevance), may not scale well to such problems. Many methods have been proposed to
reduce the complexity to sub-linear in number of labels, see Section 2.2.1, but few of them
pay attention to other challenges, like label dependencies and label noises. In this work,
we proposed a new deep learning method, incorporating capturing label dependencies and
tolerating label noise for large scale multi-label datasets.

Inspired by C2AE [12], a Ranking-based Auto-Encoder (Rank-AE), as depicted in Fig-
ure 2.2, has been proposed in our previous work [52]. Rank-AE includes three mapping
functions to be trained: a mapping from input features x to feature embeddings xh, denoted
as F(x), where h is the embedding size; an encoder from output labels y to label embed-
dings yh as E(y); a decoder from label embeddings yh to output labels y′, written as D(yh).
The proposed model is built on two assumptions: first, each instance can be represented
from two different aspects, features x and labels y, so there exists a common latent space
between x and y; second, labels can be reproduced by an autoencoder. Based on these two
assumptions, we design the object function as below:

L = min
F ,E,D

Lh(xh,yh) + λLae(y,y′) (2.19)

wherein loss Lh(xh,yh) aims to find the common latent space for input x and output y and
Lae(y,y′) enforces the output to be reproducible. λ is a hyper-parameter to balance these
two losses. During the training, the model learns a joint network including F , E and D to
minimize the empirical loss Eq (2.19).

During inference, a given input x̂ will be first transformed into a vector in latent space
x̂h = F(x̂), which will then be fed into the label decoder to compute the predictions
ŷ = D(x̂h). It is worth mentioning that although the label encoder E is ignored during the
prediction, it is able to exploit cross-label dependency during the label embedding stage [12].
Recent work also shows that using co-occurring labels information to initialize the neural
network can further improve accuracy in multi-label classification [53, 54].

[Main Contribution]. We adopt the mean squared loss in Lh(xh,yh). In Lae(y,y′), in
order to alleviate the label noise issue and train the objective in linear time, we propose a



2.2 Label Ranking 17

fully
connected 

fully
connected 

fully
connected 

Encoder

Decoder 

Embedding &
Atten

fully
connected 

fully
connected 

X

Y

Loss(XE, YE) Y'

XE

YE

X'

Figure 2.2: Ranking-based AutoEncoder for XML.

marginal-based ranking loss as follows:

Lae(y,y′) = LP (y,y′) + LN(y,y′) (2.20)

LP (y,y′) =
∑

n∈N(y)

max
p∈P (y)

(m+ y′n − y′p)+ (2.21)

LN(y,y′) =
∑

p∈P (y)

max
n∈N(y)

(m+ y′n − y′p)+ (2.22)

wherein N(y) is the set of negative label indexes, P (y) is the complement of N(y), and
marginm ∈ [0, 1] is a hyper-parameter for controlling the minimal distance between positive
and negative labels. The loss consists of two parts: 1) LP targets to raise the minimal score
from positive labels over all negative labels at least by m; 2) LN aims to penalize the most
violated negative label under all positive labels by m. The proposed loss has the following
attractive properties: 1) having linear complexity in number of labelsO(L); 2) capturing the
relative rankings between positive and negative labels; 3) tolerating the noisy labels with a
tunable hyper-parameter m.

We first compare our proposed Rank-AE method with other six outstanding methods in
state-of-the-art for large multi-label problems. In the experiment (see Table 2 in [52]), Rank-
AE usually achieves the best or the second best on six benchmark XML datasets. We observe
that the binary relevance method (PD-sparse [16]), because ignoring label dependencies,
often obtains worse performance than other ones. Besides, embedding methods, such as
SLEEC [14] and Rank-AE, usually achieve a better results than other BR and tree-based
method (Fast-XML [40]).

Furthermore, we conduct an ablation study on label noise. As claiming that the proposed
marginal-based ranking loss (Eq 2.20) is more robust to label noise, we control the noise
labels in two different ways: 1) missing labels: changing each positive label from yl = 1 to
yl = 0 with certain rate, 2) both missing and invalid labels: flipping either from positive to
negative or from negative to positive with a noise rate. The noise rates are varied from 0%
to 60% on 80% of the training set, and the rest of 20% is noise-free validation set for model
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(a) Missing Rate (b) Missing and Invalid Rate

Figure 2.3: Comparisons on noisy labelling IMDb data.

selection. We select five algorithms: FastXML, PD-Sparse, XML-CNN [51], Rank-AE and
BCE-AE, wherein BCE-AE is our proposed method but using binary cross-entropy loss in
Lae(y,y′). Comparing BCE-AE with Rank-AE can be used to verify whether the robustness
to label noise is due to the use of marginal ranking loss.

The performance are reported on the same testing set, shown in Figure 2.3. Rank-AE
consistently outperforms other four approaches and has the best robustness tolerating noise
labels. Besides, FastXML and PD-Sparse are more tolerant to missing noises than XML-
CNN, which may due to XML-CNN has greater capacity and thus more prone to over-fitting
the noise. Furthermore, when comparing Rank-AE with BCE-AE, both of which share the
same structure but only have different loss functions, the proposed marginal-based ranking
loss seems to be robuster than binary cross-entropy loss, which is yet widely used in multi-
label classification (e.g. XML-CNN).

However, we observe that the proposed Rank-AE has an efficiency bottleneck regarding
the number of labels L, thus it is limited to multi-label datasets with less than hundreds of
thousands labels. In order to run datasets with more than hundreds of thousands or millions
labels, an algorithm of computational complexity in sub-linear time is on demand.



Chapter 3

Survival Analysis

3.1 Challenges

Survival analysis is a very active research field, wherein the goal is to analyze relationships
between single or multiple explanatory variables and outcome variable, where the outcome
is the time until the occurrence of an event of interest [55]. The event of interest can be
death, or usually might be extended to occurrence of a disease, reliability of a product, di-
vorce in a marriage, click through rate and so on. The time to event or survival time can
be measured by hours, days, months, years and etc. Survival analysis has been applied in
various real-world domains, such as but not limited to healthcare, epidemiology, economics,
engineering [56–58] and so forth. One of the main challenges in this literature is to apply
existing survival analysis methods to the large-scale data [59, 60], due to the development of
data acquisition techniques to collect a wide variety of data over long-term periods. In our
epidemiology study, we aim to estimate the relationships between air pollution (explanatory
variables) and mortality (outcome of interest), but there are more than 60 million Medi-
care beneficiaries across 40 thousand ZIP Code areas in United States from 2000 to 2012,
which is up to 5.7 billion person-months of follow-up. Such prohibitively large data poses
significant challenge for most of the conventional methods. Moreover, observing the time
of occurrence of an event also presents a very common issue: a large amount of censored
observations, wherein the observations are called censored when the time of the event is in-
complete during the study period. The censored observations are usually caused by the time
limitation of the study period, or losing track during the observation period. For example, in
the mortality dataset of our study, because the mortality is only tracked from 2000 to 2012,
20 million deaths are observed (uncensored instances), while the information of deaths for
the remaining population is unknown (called censored instances). In other words, censored
instances can represent a particular type of missing or latent data. Because of this censored
issue, many conventional regression models are not directly suitable for analyzing survival
data, thus survival methods that integrate both censored and uncensored data are highly on
demand.

Due to the difficulty in handling censored and large scale data for many algorithms,
we focus on extending current effective survival methods to large scale data, e.g. Cox
model [61]. It is worth noting that there are many methods, that have been applied to Survival
Analysis, from statistical models, such as non-parametric, semi-parametric and parametric

19



20 Survival Analysis

models, to machine learning based methods (Bayesian methods, Survival Trees, Neural Net-
work and etc.), summarized in a recent survey [62]. However, over the past half century, Cox
model, as a semi-parametric statistical model, still has reigned over the research for analyz-
ing time-to-event data [59]. Comparing with non-parametric models, Cox is much easier to
interpret by the estimated regression coefficients, and yields more accurate estimation [62].
While analogized to full parametric methods, although being little harder to interpret, Cox
model does not give a strong assumption of the distribution on survival time, thus is not
necessary to violate the assumption and suffer sub-optimal estimation.

In spite of those virtue, the traditional Cox model is failed to handle correlated variables
which are commonly seen in many practical problems. In our air-pollution and mortality
example, air pollution causes, such as PM2.5 (refers to atmospheric particulate matter that
have a diameter of less than 2.5 micrometers), Nitrogen Dioxide (NO2) and Ozone (O3),
are highly correlated to each other, i.e. the presence of collinearity. Assessing the true
effects of each of the correlated variables in a flexible multivariable survival analysis is quite
challenging, often leading to unreliable and unstable estimated coefficients.

To address the above challenges, we summarize the main goal in this proposal as follows:

1. How to extend existing survival algorithms to scale on extreme large scale dataset.

2. How to handle the collinearity issue on large scale dataset.

3.2 Related Work
Since focusing on two main issues–scalability and collinearity, in this proposal, we only
review some relevant work in these two aspects.

3.2.1 Scalability

In the early stage of survival analysis, researchers often work on datasets with only a few
hundred or thousand of predictors and observations. However, the well developed data ac-
quisition techniques have motivated people to analyze data with hundreds of thousands of
predictors and millions even billions of observations across different fields. Thus, large scale
survival datasets can be recognized in two facets: high-dimensional predictors and massive
sample-size [59]. High-dimensional predictors are oftentimes seen in genomics study with
multiple gene expression as variables, which may exceed 106 [59, 60]. While in our epi-
demiology analysis, more than 60 million Medicare beneficiaries are included, and they are
tracked over 13 years, which is up to 5.7 billion person-month follow-up observations.

To find the scalable solutions, people have been working on either developing new and
efficient methodologies for large data analysis or extending the existing survival models.
For example, due to the success of deep learning, [63] extends the deep neural network
with Bayesian optimization to handle high-dimensional data; [64] proposes a novel model
in a Bayesian framework, called deep survival analysis, for large survival analysis; [59,
60] explore the sparsity of high-dimensional data using a variant of the cyclic coordinate
descent optimization for Cox model; some other regularized Cox models [65] address the
high-dimensional but low sample-size data to avoid over-fitting issue.
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To the best of our knowledge, most extensions of Cox model focus on either selecting the
best of predictors from a large range of variables or applying novel optimization techniques
in order to be scaled well on large dataset. However, for datasets with low-dimensional
variables but heavily massive sample-size (billions of observations), are rarely explored in
this domain. The reasons for the lack of exploration of such dataset are mainly twofold: I)
tracking more than billions of observations is an extremely hard and time consuming task;
II) some data information are very sensitive, thus not available for most of researchers.

3.2.2 Collinearity

In statistics, collinearity is a phenomenon where one predictor, in a multivariable regression
model, can be linearly predicted from the others. In this situation, the coefficient estimates
of the multivariable regression may change erratically in response to small changes in the
model or data [66]. It is noteworthy that When evaluating the model as a whole, e.g. pre-
dictive power, collinearity does not usually have any influence; collinearity often affects the
estimation for individual predictor. In our study, we target on the associations between each
air pollution cause and mortality. Therefore, when multiple air pollution causes are included
in one regression model, assessing the true effects of each variables becomes unreliable and
unstable [67].

Ridge regularization, also called L2 norm, is widely used in multivariable regression
model, including Cox regression model, when covariates are highly correlated [68]. Ridge
estimator spreads the weights across all correlated features, and this normally makes the
model more robust and generalized to new data. However, ridge does not provide the true
effects of each variable, instead which is exactly what we want. In addition to ridge method,
Cluster analysis and Principal Component Analysis (PCA) are also often applied to address
collinearity issue [69] by combining / removing the correlated variables. Nevertheless, either
combing or removing variables leads to lack of interpretability of the results. A most re-
cent work [70] proposes the deconfounder algorithm for scientific studies involve multiple
causes, when different variables whose effects are simultaneously of interest. The decon-
founder can infer a latent variable as a substitute for unobserved correlations and then uses
that substitute to perform downstream tasks.

3.3 Contribution and Future Work

In this section, we will claim our main contribution how to scale existing methods on ex-
treme large scale survival datasets with massive sample-size but low-dimensional features.
In particular, we aim to assess the associations between mortality and air pollution, such as
PM2.5, NO2, O3 and etc, with about 5.7 billion observations.

3.3.1 Introduction to Cox Proportional Hazard Model

In survival analysis, survival time T is the main concept, which tracks the occurrence of an
event of interest. Given the epidemiological study as an example, we often follow people
and wait until some event happens to them, e.g. deaths. One can define a survival function



22 Survival Analysis

of T :

S(t) = p(T ≥ t) (3.1)

which represents the cumulative probability that the time to the event of interest does not oc-
cur earlier than a specific time t [62]. Alternatively, one can also write the failure function:

F (t) = 1− S(t) = p(T < t) (3.2)

which is the cumulative probability that the event of interest is earlier than t. There are many
proposed methods that directly model survival function, which is equivalent to model the
corresponding failure function or the failure density function f(t) = d

dt
F (t).

In Cox model, instead we estimate another commonly used function, called hazard func-
tion, which is an instantaneous rate of failure at time t conditional on that no interest event
happened before time t:

h(t) = lim
∆t−>0

p(t ≤ T < t+ ∆t|T ≥ t)

∆t
(3.3)

Due to the existence of censored observations, who have not experienced a failure or quit
during the study period, we can write the censoring time as C, and then we rewrite the
survival times by a new variable y = min(T,C). Along with an input of the subject’s
features x ∈ RD with D as feature dimension, the survival dataset D usually consists of the
follows: D = {(yi, δi,xi) : i = 1, ..., N}, wherein δi = I(Ti ≤ Ci), y = min(Ti, Ci), and N
is the total number of observations.

Based on the proportionality assumption, Cox Proportional Hazard model (CPH) [61] is
based on each observation i, defined as:

h(yi|xi;β) = h0(yi) exp(βTxi) (3.4)

wherein h0 is the baseline hazard function, an unspecified function of the survival time y.
CPH is a semi-parametric algorithm because it contains both non-parametric and parametric
functions.

Because there is no explicit formula for the baseline hazard function, estimating Eq 3.4
directly by standard maximum likelihood is very difficult. Instead, Cox [61] proposed to
maximize the following partial likelihood:

L(β|D) =
N∏

i=1

(
exp(βTxi)∑

t∈R(yi)
exp(βTxt)

)δi

(3.5)

R(yi) = {t : yt ≥ yi} is the risk set of observations who are still survival and at risk at time
yi.

Maximizing the partial likelihood is obviously equivalent to maximize the following log-
likelihood:

`(β|D) =
N∑

i=1

δi


βTxi − log

∑

t∈R(yi)

exp(βTxt)


 (3.6)
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To simplify the model explanation, we omit the L2 penalty term of β here. It is well
known that Eq 3.6, even with L2 norm, is a smooth convex function, and a wide range
of optimization algorithms can be utilized. However, for optimization algorithms such as
batch gradient descent, Newton methods and etc., the biggest computational challenge is
due to the mathematical operations on millions or billions of subjects with time complexity
O(N(D + |R̄|D)) = O(N |R̄|D), where R̄ is the average size of risk sets. We will demon-
strate how to deal with the massive sample-size issue by exploiting the compactness in our
dataset and the CPH algorithms.

3.3.2 Compactness in Data
In our epidemiological survival analysis, we examine associations between air pollution
(PM2.5, NO2, O3) and mortality. To perform such analysis, we consider over 60 million
Medicare enrollees across 40 thousand of ZIP Code areas in the conterminous United States
from 2000 to 2012. Each Medicare individual has been measured in these aspects: gender,
age, race, timeline (monthly), indicator for being alive or dead at that time, living ZIP Code,
and the corresponding monthly air pollution values in that ZIP Code and so on. And each in-
dividual has been tracked through 13 years with monthly report. As a result, we have massive
sample-size (N), approximately 5.7 billion person-months followups, but low-dimensional
features (D), less than 20. Besides, each feature, such as gender, age and race, only con-
tains few possible values, except for air pollution feature, which is continuous. However, for
individuals living in the same ZIP Code area, they also share the same air pollution feature.
In this case, the product operation on βTxi will be repeated many times, i.e. the number of
individuals with exactly the same properties.

In practice, one can avoid the duplicated computation by grouping individuals, who have
the same properties, into one group with two additional counts: the total number of deaths
in this group and the size of the group. Normally, air pollution is varied month to month
for each ZIP Code area, and each area has different level pollutant. Therefore, we could
group the epidemiology survival data according to different locations and months. We write
a new location-time related feature as X l

t , indicating the variables for people who have same
properties living in location l at time t. And the number of deaths and the size of the group
are denoted as δlt and Y l

t respectively. By exploiting the compactness in the given data, we
shrink lots of duplicated row data into one grouped row. In our example, the original person-
month data has roughly 5.7 billion rows, but after the grouping, the number has been reduced
to 0.5 billion. The data storage has also been compressed to 30 Gigabit.

3.3.3 Cox PH model with Compact Data
The original partial log-likelihood (Eq 3.6) is based on individual observation, and its gradi-
ent can be written as:

∂

∂β
`(β|D) =

N∑

i=1

δi


xi −

∑

m∈R(yi)

xm
exp(βTxm)∑

t∈R(yi)
exp(βTxt)


 (3.7)

The gradient is usually used to update the coefficient vector β. Without compressing the
data structure, the updating can be realized in time O(N |R̄|D), which is an extremely time-
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consuming process with large scale sample size. However, after introducing the shared
location-time related features xlt and accumulated counts for deaths and local population
(δlt and Y l

t ), we show that the updating rule can be transformed into the following format:

∂

∂β
`(β|D) =

∑

l∈L




T∑

t=1

δltX
l
t


Y l

t − exp(βTX l
t)
∑

m∈R(t)

Y l
m∑

j∈R(m) exp(βX l
j)




 (3.8)

wherein the L is the set of locations, i.e. 40 thousand ZIP Code areas, and T is the monthly
timeline from 2000 to 2012 (The size of T is 13× 12 = 156). One can find the proof of the
transformation in Appendix A. The time complexity for Eq 3.8 is O(LT |R̄|D). Comparing
it with Eq 3.7 O(N |R̄|D), one can see that the time has been reduced by a factor N

LT
≈ 900,

when N ≈ 5.7 million, L ≈ 40 thousand, and T = 156. In other words, the shared updating
rule allows CPH model to be up to 900 times faster during training.

We choose two different optimization algorithms, Batch Gradient Descent and Limited-
memory BFGS(L-BFGS) [71], to maximize the objective function according to Eq 3.8. The
second derivative of Eq 3.6 has the same virtue when the data is compressed.

We first verify the correctness of our CPH implementation by comparing with some ex-
isting packages in R and SAS. We sample a small subset (1 million person-month followups)
and use the same settings in different packages. The experiment result shows that our imple-
mentation can provide almost identical estimations to those obtained from other packages,
see Appendix B.

For testing CPH on the whole dataset, we do not have any fair comparisons because
almost all of the available packages are not feasible for such large scale data. And there is
no other researchers reporting the estimation based on 5.7 billion person-months of follow-
up before. To our best knowledge, Di et al. [72] is the closest analysis, wherein only 0.5
billion person-years of follow-up are considered. In their study, they claimed that running
Cox PH model with larger scale data would be computationally infeasible. However, we
demonstrate that our improved Cox PH model is able to analyze this data within 10 minutes
on one machine (Intel Xeon CPU E5-2680 v4 2.4GHz and 56 logical cores).

In the previous studies, researchers often consider smaller set of population for the esti-
mating the associations between air pollution and mortality. Therefore, their studies usually
provide key evidence of air pollution’s causal impacts on mortality from specific causes of
deaths, or people living in urban areas only. While our proposed CPH model allows us to
examine pollution impacts on the mortality and health experience of extremely large cohorts,
thus allowing examination of understudied groups. Based on this new implementation, a few
of our work have been published on either journals or conferences [56, 73–75].

3.3.4 Collinearity
Although we estimate similarly consistent and strong associations between single air pollu-
tion exposure and increased mortality, our study has a critical issue when including multiple
air pollution exposures into CPH model. This limitation is usually caused by the strong
correlations between air pollution exposures, e.g. the Pearson correlation 1 between PM2.5

and NO2 is 0.60. In Table 3.1, when modeling pollution separately, the estimation for each

1https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Single Pollutant Model Two Pollutant Model
pollutant PM2.5 NO2 PM2.5 NO2

β∗ 0.0211 0.0245 0.0001 0.0026

Table 3.1: Comparisons between one-pollutant Cox Proportional Hazard and two-pollutant
CPH Model. Single Pollutant Model is CPH model with one pollution exposure only, while
Two Pollutant Model is the one with two pollution exposures the same time.

pollutant is strong positive, but the association for PM2.5 is almost attenuated to zero when
NO2 is included together. As mentioned before, collinearity often affects the estimation for
individual predictor and the assessment becomes unreliable and unstable [67] because of the
overlapping information the predictors share.

Strategy I-Ridge Norm. The adverse impact of collinearity in regression has been ob-
served, but there are not much attention since most of the time survival analyzes focus on a
single exposure of interest. Besides, dropping some of the correlated variables (i.e. including
only one correlated variable) is also often recommended [76, 77]. This is why we start with
assessing the effect on one single pollution exposure. However, for the sake of scientific
advancement and model completeness, sometimes we still need to keep correlated variables
to build a more accurate model. One of the most common ways to deal with correlated vari-
ables is to apply ridge (L2) regression [68, 76]. We implemented the CPH model with L2
norm, unfortunately, we observed that the estimations for collinear variables could be easily
manipulated by tuning the regularization strength, resulting in biased estimation [76].

Strategy II-Residual Model. Another often used strategy to handle collinearity is called
residual model [77–79]. For example, PM2.5, which correlated with NO2, is not directly in-
cluded in the regression model. Instead, we fit a linear regressor for PM2.5 using NO2 as
predictor, and add the residuals from the fitted regressor into the Cox regression model. In
this case, the residual of PM2.5 is orthogonal to No2, thus reduce the issue from collinear-
ity. However, this residual model has been criticized for an overestimation or difficulty in
interpretation [77].

Strategy III-Deconfounder. Yixin et al. [70] recently propose a deconfounder algorithm
to find and fit a latent-variable model to capture the dependence among variables, e.g. the
dependence in air pollution exposures. This estimated variable is a substitute for unobserved
confounders, and used in the causal inference. The deconfounder aims to discover the hid-
den confounders, variables that affect both other variables and the outcome. For example,
any location with high PM2.5 may also have high NO2 pollutant, such as urban areas. And
PM2.5 has an effect on both other pollutant and the increasing mortality. With all assump-
tions hold (see [70], the deconfounder can provide an unbiased estimation. Therefore, we
plan to implement the deconfounder algorithm to solve the collinear variables issue in our
survival analysis. However, before the implementation, we have to ask ourselves the follow-
ing two questions: 1) can we extend the deconfounder method to survival analysis, instead
of the original application causal inference; 2) is it able to scale deconfounder algorithm well
on our big dataset.





Chapter 4

Timeline

Timeline Task Progress
Fall 2019 Speeding up CBM algorithm and handling label noise and label imbalance issues ongoing
Spring 2020 Optimizing task specific metrics for Extreme Multi-label classifiers planning
Spring 2020 Handling collinearity issue in Survival analysis ongoing
Summer 2020 Thesis writing and defense. planning
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1 Case Crossover

1.1 General Framework

Let X l
it be the exposure for person i belonging to location l and in interval t, t = 1, . . . , T and let Y l

it

indicates whether person i has the event at location l in interval t(1 - yes, 0 - no). Assume that the outcome
Y l
it is rare and that the probability that subject i fails in interval t at location l is given by the relative risk

model:

λi(t,X
l
it) = λit exp(βX

l
it) = λi exp(βX

l
it + γit) (1)

Each person is assumed to have his own baseline risk λit at time t consisting of two parts:

1. λi is a constant frailty for person i;

2. exp(γit) is the effect of unmeasured time-varying factors on his risk.

1.2 Case-crossover design

In the case-crossover approach, the exposure of cases in interval ti is compared to the exposures from a
set of references periods, where ti is event interval and W (ti) is a set of references periods. For example,
ti = 8 indicates the event was on the 8th day and W (8) = {7, 8, 9} means the day before and the day
after, including itself as the reference periods. The only assumption of a case-crossover design is that the
time-varying effect γit is constant for all t ∈W (ti).

Conditional on an individual being a case within a pre-specified reference windo W (ti), the probability
pliti that subject i belonging to l location and fails at time ti is

pliti = P (Ti = ti|X,W (ti),
T∑

m=1

Y l
im = 1, Li = l) (2)

=
P (Ti = ti,

∑T
m=1 Y

l
im = 1, Li = l|X,W (ti))∑

j∈W (ti)
P (Ti = j,

∑T
m=1 Y

l
im = 1, Li = l|X,W (ti))

(3)

=
λi exp{βX l

iti
+ γiti}∑

j∈W (ti)
λi exp{βX l

ij + γij}
(4)

=
exp{βX l

iti
}

∑
j∈W (ti)

exp{βX l
ij}

(5)

which is free of terms λi and γiti .
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1.3 Derivation

The likelihood is defined as following, assuming subjects are independent.

L(β) =
n∏

i=1

pliti =
n∏

i=1

(
exp{βX l

iti
}

∑
j∈W (ti)

exp{βX l
ij}

)
(6)

Log-likelihood:

`(β) =

n∑

i=1

log pliti =

n∑

i=1


βX l

iti − log
∑

j∈W (ti)

exp{βX l
ij}


 (7)

1.3.1 Derivation I

Take derivation directly:

∂`(β)

∂β
=

n∑

i=1


X l

iti −
1∑

j∈W (ti)
exp{βX l

ij}
∑

m∈W (ti)

exp{βX l
im}X l

im


 (8)

=
n∑

i=1


X l

iti −
∑

m∈W (ti)

X l
im

exp{βX l
im}∑

j∈W (ti)
exp{βX l

ij}


 (9)

This can be used as the updating rule for β. The complexity of this updating rule is correlated to number
of subjects(persons) and the size of window, which can be written as O(n|W |)

1.3.2 Derivation II

This derivation will be based on group information. Denote the observed number of events Y l
t at location l

in interval time t is Y l
t =

∑
i∈I Y

l
it, where I the subjects satisify the same time t, same location l and same

exposures X .
If we assume the group subjects share the same exposure, X l

it = X l
t , the Log-likelihood could be written

as
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∂`(β)

∂β
=

n∑

i=1


X l

iti −
∑

m∈W (ti)

X l
im

exp{βX l
im}∑

j∈W (ti)
exp{βX l

ij}


 (10)

=
∑

l∈L

∑

i∈l


X l

iti −
∑

m∈W (ti)

X l
im

exp{βX l
im}∑

j∈W (ti)
exp{βX l

ij}


 (11)

=
∑

l∈L


∑

i∈l


X l

ti −
∑

m∈W (ti)

X l
m

exp{βX l
m}∑

j∈W (ti)
exp{βX l

j}




 (12)

=
∑

l∈L




T∑

t=1

Y l
t


X l

t −
∑

m∈W (t)

X l
m

exp{βX l
m}∑

j∈W (t) exp{βX l
j}




 (13)

=
∑

l∈L




T∑

t=1

Y l
tX

l
t −

T∑

t=1

Y l
t

∑

m∈W (t)

X l
m

exp{βX l
m}∑

j∈W (t) exp{βX l
j}


 (14)

=
∑

l∈L

[
T∑

t=1

Y l
tX

l
t −

T∑

t=1

T∑

m=1

Y l
tX

l
m

I(m ∈W (t)) exp{βX l
m}∑T

j=1 I(j ∈W (t)) exp{βX l
j}

]
(15)

=
∑

l∈L

[
T∑

t=1

Y l
tX

l
t −

T∑

m=1

(
X l
m

T∑

t=1

Y l
t

I(m ∈W (t)) exp{βX l
m}∑T

j=1 I(j ∈W (t)) exp{βX l
j}

)]
(16)

=
∑

l∈L

[
T∑

t=1

Y l
tX

l
t −

T∑

t=1

(
X l
t

T∑

m=1

Y l
m

I(t ∈W (m)) exp{βX l
t}∑T

j=1 I(j ∈W (m)) exp{βX l
j}

)]
(17)

=
∑

l∈L

[
T∑

t=1

X l
t

(
Y l
t −

T∑

m=1

Y l
m

I(t ∈W (m)) exp{βX l
t}∑T

j=1 I(j ∈W (m)) exp{βX l
j}

)]
(18)

=
∑

l∈L




T∑

t=1

X l
t


Y l

t −
∑

m∈R(t)

Y l
m

exp{βX l
t}∑

j∈W (m) exp{βX l
j}




 (19)

=
∑

l∈L




T∑

t=1

X l
t


Y l

t − exp{βX l
t}

∑

m∈R(t)

Y l
m∑

j∈W (m) exp{βX l
j}




 (20)

Now the updating rule has been transformed into the one related to number of locations, times and
references window size. The time complexity is O(LT |W |). The advantage of this updating method is that
we shrink lots of duplicated persons row data into much smaller number of groups, which share the same
location l and exposures(features) X l

t at the same time t.

2 Cox Proportional Hazards

2.1 Model

The hazard function for the Cox proportional hazard model has the form:

h(yi|βββ) = h0(yi|βββ) exp(βββTxxxi)

where

• h0(yi|βββ): the unspecified baseline hazard function.

3



• i ∈ [1, n]: each individual and n is the total number of individuals. .

• yi = min(ti, ci): ti is time-to-event(failure time) and ci is right-censoring time.

• xxxi = (xi1, xi2, . . . , xip)
T : p-vector of features for the individual i.

• βββ = (β1, β2, . . . , βp)
T : p-vector of underlying model parameters.

The n observed data DDD = {(yi, δi,xxxi) : i = 1, . . . , n}, where δi = I(ti ≤ ci) is an indicator variable such
that δi = 1 if the observation is not censored and 0 otherwise.

2.2 Partial Likelihood

To estimate the underlying parameters βββ, the original likelihood L(βββ|DDD) is hard to maximize. Cox proposed
to maximize the partial likelihood:

Lp(βββ|DDD) =
n∏

i=1

(
exp(βββTxxxi)∑

t∈R(yi)
exp(βββTxxxt)

)δi

where R(yi) is the risk set of the i-th observation, defined as R(yi) = {t : yt ≥ yi}

2.3 Estimate Parameters

Maximizing partial likelihood is equivalent to maximize log-partial likelihood:

lp(βββ|DDD) =
n∑

i=1

δi



βββ

Txxxi − log


 ∑

t∈R(yi)

exp (βββTxxxt)







The negated log-partial likelihoods are convex, and a wide range of optimization algorithms can be
utilized. In our experiments, we apply Limited-memory BFGS algorithm to minimize the negated log-partial
likelihoods:

βββ∗ = argmin
βββ
−lp(βββ|DDD)

To apply L-BFGS, we have to calculate the first derivatives of −lp(βββ|DDD) with respect to βββ:

−l′p(βj) = −
n∑

i=1

δi

(
xij −

∑
t∈R(yi)

xtj exp (βββ
Txxxt)∑

t∈R(yi)
exp (βββTxxxt)

)

To produce approximate standard errors for the regression coefficients, we need to calculate the second
derivatives:

−l′′p(βj) =
n∑

i=1

δi





∑
t∈R(yi)

x2tj exp (βββ
Txxxt)∑

t∈R(yi)
exp (βββTxxxt)

−
(∑

t∈R(yi)
xtj exp (βββ

Txxxt)∑
t∈R(yi)

exp (βββTxxxt)

)2




3 Proportional Hazard Model with Frailties

3.1 model

For estimation of zip code specific long-term air-pollution mortality risks, we will consider proportional
hazard model with multivariate random effects(frailties). For this model, event times from the same group
(zip code area) are likely to be correlated. Suppose there are C number of clusters(zip code areas). Then the
proportional hazard model with frailties has the form:

h(yij |βββi) = h0(yij |βββi) exp (βββTi xxxij + bi)

where
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• h0(yij |βββi): the baseline hazard function.

• i ∈ [1, C]: each clusters, C is the total number clusters(zip code areas).

• j ∈ [1, ni]: each individual from cluster i, and ni is the total number of individual from ith cluster.

• yij = min(tij , cij): where tij is the failure time, and cij is the right-censorinbg time.

• δij : is an indicator variable such that δij = 1 if the observation is not censored and 0 otherwise.

• xxxij : p-vector of features for the individual j in cluster i.

• βββi = (βi1, βi2, . . . , βip)
T : p-vector of cluster-specific underlying model parameters.

• bi: the cluster specific random effects.

3.2 Estimate Parameters

To solve the frailty model, serveral methods have been proposed these years. Xue and Ding (1999) used a
Gibbs Sampling approach. Ripatti and Palmgren (2000) considered a penalized partial likelihood approach.
Vaida and Xu (2000) proposed a nonparametric maximum likelihood estimator, obtained using a Monte Carlo
EM algorithm. Cortinas-Abrahantes et al. A comprehensive comparison of these methods can be found in
Gamst et al.(2009). We will follow one of these methods mentioned above or other related methods, to solve
this problem.
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Appendix S1. Java Implementation of Cox Proportional Hazards Models 
 
To perform our analyses of 12-month PM2.5 exposures and cause-specific mortality on our large-scale data, we 
implemented both linear and non-linear Cox PH methods in Java. Our implementation overcame memory and 
processing limitations of conventional software packages, such as R and SAS, using data grouping and linkage 
methods, optimization techniques, and multi-threading, as detailed below. Our Java implementation will be hosted 
on GitHub once our paper is accepted. These methods were able to run our models based on data for the whole 
country in approximately ten minutes. Below we briefly present our data grouping methods, followed by our Cox 
PH re-implementation for the linear model, then the restricted cubic spline, and finally their validation.  
  
Data Processing. We created joint datasets that minimize redundant entries by aggregating rows with the same 
attributes by ZIP code and month and by adding to these joint datasets two counting attributes: the number of deaths 
and the total population for the ZIP code and month.  
 
Re-Implementation of Linear Cox PH model. The original Cox PH estimates air pollution-associated mortality 
risks using stratum-specific baselines1: 

ℎ(𝑡$|𝑋$, 𝑠$) = ℎ+, exp(𝛽𝑋$),                                         (1) 
where 𝑖 ∈ 	 [1, 𝑛] represents each individual 𝑖, with 𝑛 the total number of individuals. ℎ+, is a stratum-specific 
baseline hazard function, 𝑦$ 	= 	𝑚𝑖𝑛(𝑡$, 𝑐$),	where 𝑡$ is event time and 𝑐$	the right-censoring time for each individual 
𝑖. In addition, let 𝑿𝒊 = =𝑥$?, 𝑥$@, … , 𝑥$BC

D
 be a p-vector of covariates for the individual 𝑖, and  𝜷 = =𝛽?, 𝛽@, … , 𝛽BC

D
 

be the p-vector of estimating model parameters. The 𝑛 observed data 𝐷 = {(𝑦$, 𝛿$, 𝒙𝒊): 𝑖 ∈ [1, 𝑛]}, where 𝛿$ = 𝐼(𝑡$ ≤
𝑐$) is an indicator variable such that 𝛿$ = 1 if the observation is not censored and 0 otherwise.  
 
To simplify the problem, a partial likelihood function of Cox PH was proposed by Cox 1: 

𝐿B(𝜷|𝐷) = ∏ P QRS=𝜷𝑻𝒙𝒊C
∑ QRS=𝜷𝑻𝒙𝒕CW∈X=YZC

[
	\Z

]
$^?                               (2) 

where 𝑅(𝑦$) is the risk set of the given individual 𝑖, and 𝑅(𝑦$) = {𝑡: 𝑦` ≥ 𝑦$}, representing any individual 𝑡, who 
has survived at least longer than individual 𝑖. In general, we will assume that there are no tied survival times. 
Therefore, in order to break the ties, Mittal et al.2 proposed to add very small random number (uniform from 
[−10de, 10de]) to the event time. Since the survival time order, but not actual event time, is used when updating the 
model, we simply shuffle the risk set and end up with an ordered event times to break the ties in our implementation. 
Furthermore, optimizing the above partial likelihood is equivalent to estimate the partial log-likelihood function: 

𝑙B(𝛽|𝐷) = 	g𝛿$ h𝜷𝑻𝒙𝒊 − log l g exp(𝜷𝑻𝒙𝒕)
`∈m(nZ)

op
]

$^?

								(3)	 

To simplify the model explanation, we omit the penalty term of 𝜷 here; however, the L2 penalty term has been 
adopted in our Cox PH model. Fortunately, Eq (3), even with the L2 penalty term, is a convex function, and a wide 
range of optimization algorithms can be utilized. We chose to employ the Limited-memory BFGS(L-BFGS) 
algorithm3 to minimize the negative log-partial likelihoods: 

𝜷∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷 − 𝑙B(𝜷|𝐷)                                          
L-BFGS is a limited memory quasi-Newton methods for large scale optimization, which has been employed as one 
of the most popular optimization algorithms in machine learning4, 5. As a quasi-Newton method, L-BFGS is not 
required to compute the Hessian matrix of variables, but to estimate an approximation of Hessian with only a few 
vectors. Thus, the L-BFGS method is particularly well suited for optimization problems with a large number of 
variables. Even though, the optimization is still expensive, since the mathematical operations on millions of subjects 
require massive computation. Since the number of variables and the corresponding number of categories for each 
variable are very few, it is not hard to notice that lots of the rows share the exactly the same covariates. As a result 
of this, lots of productions of estimated parameter 𝜷 and covariates 𝒙 are the same. If subjects share the same 
variables (𝑥v), we simply group them together, with two counts for each group 𝑔: number of deaths (𝛿v) and total 
number of people (𝑦v), defined as: 



𝛿v = 	g𝛿$
$∈v

 

𝑦v = 	g1
$∈v

= |𝑔| 

By introducing groups, we could redefine Eq (3) as: 

𝑙B(𝛽|𝐷, 𝐺) = 	g𝛿v h𝜷𝑻𝒙𝒈 − log l g yzexp(𝜷𝑻𝒙𝒕)
`∈m=n{C

op
v∈|

(4) 

where 𝐺 is the total distinct groups from the whole dataset. We could also roughly estimate the upper bound number 
of distinct groups within 𝐺. Assuming variables only contain gender, race, age and ZIP code, wherein ZIP code has 
distinct PM2.5, leading to that the variables from these ZIP areas are all different, we have 40,000 (number of ZIP 
Codes) distinct variables at least, and 2 types of gender, 2 groups of race and 26 age categories. In total, we have 
40,000 ∗ 2 ∗ 2 ∗ 26 ≅ 4	𝑚𝑖𝑙𝑙𝑖𝑜𝑛	distinct groups at a time point. Comparing to computing productions, 
exponentiations and logarithms on 64 million enrollees, we only need at most ?

?�
	computation power, which saving 

almost 95% time.  
 
Suppose there are 𝑆 strata in total, and then individuals are split into S strata, the partial log-likelihood Eq (4) can be 
considered as one component from a specific strata or group 𝐺. Overall, the partial log-likelihood for Strata Cox PH 
model can be written as: 

𝑙B(𝛽|𝐷, 𝑆) = 	∑ 𝑙B|∈� (𝛽|𝐷, 𝐺)                                            (5) 
which is still a convex optimization problem.   
 
Restricted Cubic Splines. To Study the non-linear relationship between the cause of death and exposures, we 
implemented Restricted Cubic Splines (RCS)6 in the Strata Cox PH model. The mechanism of RCS is to split up the 
continuous range of predictor variables with a few number (𝑙) of pre-defined "knots", which are written as 
𝑘?, 𝑘@, … , 𝑘� in an ascending order. With 𝑙 knots, a size of 𝑙 − 2 new variables will be generated for each original 
variable (𝑥) by the following formula: 

𝑥$ = (𝑥 − 𝑘$)�� − (𝑥 − 𝑘�d?)��
��d�Z
��d����

+ (𝑥 − 𝑘�)��
����d�Z
��d����

   (6) 

For 𝑖 = 1, 2, … , 𝑙 − 2. And 𝑢�	is defined as: 

𝑢� = 	 �
𝑢									𝑖𝑓	𝑢 > 	0
		0									𝑜𝑡ℎ𝑒𝑟𝑠𝑖𝑠𝑒 

 
Exposure-Response Curves. We examined the shape of the association of PM2.5 exposure and cause-specific 
mortality using restricted cubic splines in Cox PH models with 3 knots6, with the locations of the knots as [0.1, 0.5, 
0.9] in quantiles of each continuous variable in our study. We note that restricted cubic splines are designed 
differently in some existing software packages, such as rcspline.eval7 in R, wherein normalization is introduced to 
the new variables to reduce ill-conditioning problems. We applied the 𝑛𝑜𝑟𝑚 = 2 settings7, which normalizes each 
new variable by the two-thirds of the spacing between the first and last knots. Therefore, the new generated 
variables can be written as: 

𝑥]���$ = �Z

(��d��)
𝟐
𝟑
           (7) 

wherein 𝑥$ is calculated from Eq (6). The normalization takes the advantage of making all new generated non-linear 
terms be on the original variable scale7. 
 
Model Validation. To verify of our Java implementation of the stratified Cox PH model with and without restricted 
cubic splines, we created a sample dataset of 10,000 subjects, which is sufficiently small to run our full analysis in 
R. For each subject, we included data on age (65-90), gender (male or female), race (White, Black, Hispanic, Asian, 



other), location (800 sites), date (120 total months), and death (0 or 1), totaling 1,011,945 subject-date records. We 
applied the Cox PH function coxph from the "survival" package in R8, with strata on age, gender and race, and 
Restricted Cubic Splines for the exposure using rcspline.eval from "Hmisc" package in R7. Knots were specified at 
the 10th, 50th, and 90th percentiles. We also used the same settings in our Java implementation of these models and 
compared our findings to those from R. As shown in Table S1, our Java implementation provided almost identical 
risk estimates and standard errors to those obtained in R.  
 
 

Table S1. Validation of Java implementation of Cox PH models using public 
package in Ra 

Estimators Linear Cox PH Non-Linear Cox PH 
R Java R Java 

𝛽�   
(se) 

0.00906 
(0.00895) 

0.00904 
(0.00895) 

0.00948 
(0.02367) 

0.00940 
(0.02367) 

𝛽������  
(se) 

- - 0.00197 
(0.01982) 

0.00205 
(0.01982) 

 

a Models include strata for age, gender, race, and ZIP code. Non-linear models estimated using restricted cubic splines with 3 knots. 
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